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ABSTRACT 
 
Tactical and mobile ad hoc networks (MANETs) are key technology enablers for future 
mission-critical communication infrastructures such as those envisioned for disaster 
relief operations and military missions. While extremely flexible and powerful, these 
kinds of networks also create a new set of demands. The traditional layered approach 
that has shielded applications from the underlying networks is no longer applicable, and 
a new challenge has emerged—how to provide such interface or mutual awareness 
while avoiding customized stove-piped solutions.  
The notion of a cross-layer communications substrate for tactical battlefield 
environments described in this work proposes to address the problem by enabling a 
two-way interface between higher-level applications, middleware or decision 
architectures, and the underlying communications infrastructure.  
The adaptation across multiple layers of the communication stack requires mechanisms 
capable of coordinating local adaptation at different time-scales to better allocate 
resources and capabilities in response to changes that may occur either on demand or 
proactively, based on explicit application requirement patterns.  
XLayer is a specialized cross-layer communications substrate designed to support a 
communications infrastructure for tactical and mobile ad hoc networks that provides the 
mechanisms to enable the interaction between applications and the different levels of 
the communications substrate to support a large range of scenarios and capabilities. 
In this report we summarize some of the concepts, architectural design choices and 
capabilities of the XLayer communications substrate. 
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SUMMARY 
 
Traditionally, cross-layer strategies for tactical and mobile ad hoc networks have 
primarily focused on short-term adaptation and state reporting between neighboring 
layers, generally for the optimization of a single protocol. Because local adaptations at 
each layer usually occur at different time-scales, a better coordination mechanism for an 
effective cross-layer communication infrastructure is required to allow applications and 
decision architecture systems to better adapt and meet Quality of Service (QoS) 
requirements and constraints. 
We have developed XLayer, a cross-layer infrastructure for tactical networks that 
provides the necessary mechanisms to enable the interaction between applications or 
middleware and the different levels of the communications substrate, facilitating the 
integration of more complex functionality by leveraging the information and functionality 
provided by core services that abstract essential capabilities realized across the various 
layers of the communications stack. 
XLayer supports several operating systems, multiple computing platforms, and tactical 
radios where specific capabilities enable seamless operation across multiple networks 
and communication environments in tactical systems and other applications in security 
and network management. 
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1 INTRODUCTION 
 
In this report, we summarize our findings in the research for the development of XLayer, 
a cross-layer communications substrate designed to provide a modular communications 
infrastructure that allows applications to better adapt to the characteristics of dynamic 
communications environments, and support application requirements and constraints 
for tactical and mobile ad hoc networks.  
Section 2 describes the methods, assumptions and procedures in the development of 
XLayer. Section 3 introduces the goals and capabilities of XLayer, summarizes the main 
characteristics of previous cross-layer approaches that addressed similar problems 
considered in our research, and gives a detailed description of the design and 
implementation of XLayer and its core components. Section 4 presents specific 
applications and discusses the results. Section 5 summarizes our conclusions and 
discusses the impact of XLayer in different projects and demonstrations. Finally, Section 
6 presents our suggested course of actions. 
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2 METHODS, ASSUMPTIONS AND PROCEDURES 
The XLayer communications substrate was designed to provide a modular framework 
for distributed monitoring and resource management in tactical environments. In this 
section we introduce our design assumptions and evaluation methods.  

2.1 Design Assumptions 
We consider a mobile wireless network environment where each platform may 
potentially have multiple communications interface, connected through shared or point-
to-point network links. As illustrated in Figure 1a, our target scenario includes a  
conventional link-uniform topology used in MANET research, where platforms are 
assumed to communicate through a common network medium that is shared between 
all nodes. In Figure 1b, the true underlying topology is shown, with connections between 
the different interfaces. 

 
Figure 1. Overlapping Topologies 
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2.1.1 Visibility 
Each interface can be fully monitored and attributes at different layers can be 
configured, at run time, by the proposed infrastructure. Visibility is an important 
capability for resource management and coordination across different nodes and 
applications. Low-level network visibility can be achieved through monitoring APIs 
provided by the Operating System, radio-specific APIs, or customized components that 
communicate with the radio interface.  
Monitoring and control of network and transport protocols require some level of code 
change. Alternatively, low-level data packets, such as those at the MAC-level, can be 
mapped and correlated to routing and transport, if not encrypted. 
Application-level monitoring also requires some level of collaboration or feedback from 
applications, which may be provided, for instance, through common APIs used by 
applications to monitor and report system resources, protocols, and services.  

2.1.2 Control  
Also as part of this work, we assume that configuration and control APIs for the system 
are available at run-time. Due to time-scale requirements of different layers and 
communication components, it is important that both monitoring and control APIs can 
operate in different time scales, and yet share the necessary messages and information 
for coordination. 
We assume that each node has full control over its communications and computational 
resources, and can reconfigure its settings at all layers, at run time. Such configurations 
include, for instance, physical network interface settings, beaconing parameters and 
window sizes of higher-level protocols, and also application-level restrictions for 
resource utilization, computational load, data shaping, etc. 

2.1.3 Distributed Coordination 
Lastly, we assume that nodes can share state information and coordination messages 
efficient for distributed network management. The sharing of information must be done 
efficiently and must minimize the co-dependency between services and applications. 
We assume that high-level services and applications can be modified to utilize 
messaging and control APIs provided by the infrastructure for discovery and information 
exchange.  

2.2 Project Goals and Requirements 
The primary goal of the proposed project was to create a communication substrate (or 
middleware) that would closely interface low level protocols and capabilities in the 
tactical network environment with high level distributed applications and information 
management systems. The goal was to establish this seamless cross-layer interface to 
improve the agility, visibility and coordination of information management systems, while 
maintaining a loose coupling between the applications and communications 
infrastructure. 
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As a proof-of-concept of the proposed cross-layer capabilities, we have scoped our 
project to address four areas of special interested, while focusing on the architectural 
design, core capability development, modularity and extensibility of the proposed 
infrastructure. The four areas chosen as proof-of-concept for our developments are 
described in the following paragraphs. 

2.2.1 Seamless Support of Heterogeneous Networks 
Actual battlefield deployments generally include a number of tactical radios with 
different link and data rate capabilities. The technical characteristics of different 
interfaces and data links may vary significantly in terms of capacity, latency, medium 
access policies, etc.  
Links are connected to an interface and applications bind to specific interfaces to 
communicate with one another, effectively forming sets of overlapping networks that are 
connected through some of the multi-interface nodes in the database. A capability of 
interest for the proposed substrate is to seamlessly communicate across the different 
networks, allowing applications to locate, and address each other effortlessly, taking 
advantage of the best communication paths between the two end-points.  
Such capability should be achieved transparently, not requiring applications to maintain 
separate links to multiple interfaces, or even being aware of multiple interfaces and 
networks.  
The XLayer communications substrate achieves this capability by creating a common 
network service that controls each interface independently (see 3.3.2.7). This capability 
was also demonstrated in simulation on an emulated environment using different links 
and tactical radios (see 4.7). 

2.2.2 Adaptive Discovery and Information Dissemination 
In the context of this work, discovery refers to the process through which a node 
becomes aware of other nodes and the services they provide. Nodes make use of the 
discovery mechanism to register services and advertise the availability of computational 
resources through the dissemination of messages across the network. Likewise, the 
dissemination of queries enables nodes to find other nodes and services with specific 
capabilities and resource availability.  
Because of the lack of a fixed infrastructure and the presence of nodes that are allowed 
to move freely through the network, discovery and information dissemination is often 
accomplished in MANETs by the broadcasting of packets. The most simplistic form of 
broadcasting, called flooding, typically causes unproductive and harmful bandwidth 
congestion as each node retransmits each received packet exactly once. 
Many researchers have proposed more efficient broadcasting techniques whose goal is 
to minimize the number of retransmissions and thus reduce the overhead of information 
dissemination in MANETs. Although more efficient than simple flooding, the 
effectiveness of these techniques to reduce congestion and resource utilization greatly 
depends on the network topology and traffic conditions [20]. 
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We have designed a hybrid discovery and information dissemination mechanism that is 
capable of self-adapting to different network topologies and traffic scenarios. This self-
adapting mechanism monitors the network at different levels to make use of a 
broadcasting algorithm that is more suitable for a set of localized network conditions. 
The evaluation results of our approach are discussed in section 4.4. 

2.2.3 Improved Routing and Transport Support 
Information gathered from physical and network layers can also enable the 
improvement of routing and transport protocols for enhanced application or information 
management system support.  
At the routing level, we have investigated a number of cross-layer strategies for 
improvement, including specialized multicast implementations [10][11], and predictive 
routing protocols, detailed in section 4.1.  
We have also explored these capabilities for cross-domain routing, designing a dynamic 
gateway selection controller that seamlessly, and on demand, created proxy nodes to 
bridge across heterogeneous routing protocols [7]. Dynamic gateway selection is further 
discussed in section 4.5. 
In terms of transport protocols, we have investigated dual-link strategies to improve the 
reliability or throughput of transport protocols, in response to requirement defined by 
higher-level services and applications.  

2.2.4 Improved Visibility of Network State 
Network visibility is a critical capability for adaptive information systems and 
applications. Critical information includes the configuration of computational platforms 
and interfaces, as well as the demand (e.g. ongoing data flows and computational 
requirements) and availability of resources.  
The XLayer communications substrate provides the bases for a distributed monitoring 
infrastructure that enables both the collection, aggregation and sharing of node state 
information for resource management. The XLayer distributed monitoring service was 
applied in support of a related AFRL project entitled QoS-Enabled Data Dissemination 
[13][14][15], and is further discussed in section 4.6. 
Information disseminated through the Monitoring Service is available to other services 
and applications at each node, and used for tasks that include dynamic resource 
allocation and planning.  
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2.3 Design Approach and Evaluation Procedures 
The XLayer substrate is, by design, a collection of control algorithms that share a 
common representation, data-storage, communications, and coordination infrastructure. 
As detailed in Section 3, algorithms implemented as XLayer controllers can be 
instantiate and parameterized on demand to support application requirements or other 
services. Our experimental validation and evaluation procedures varied for different 
algorithms and contexts, but they were generally based on numerical simulations, 
emulation experiments in controlled environments, and field test exercises, which were 
primarily used for demonstrations and qualitative results.  

2.3.1 Experimental Studies and Evaluations 
In the early stages of the project, we relied on the NS-2 simulator for testing and 
evaluation, which was later replaced with NS-3 as our primarily simulation environment.  
In addition to simulation, we have also developed an emulated network environment for 
development and evaluation where different link conditions can be quickly emulated to 
recreate a dynamic network topology, while allowing the XLayer substrate, information 
management system and applications to run in virtual machines operating at standard 
operating system time-scales. Emulation environments are very important to support the 
evaluation of systems and protocols that are time-sensitive, such as routing and reliable 
transport protocols like TCP. For such studies, the event driven nature of simulated 
environments often create artifacts on the data that may compromise the results. In 
support to this task we have developed a testbed emulation environment that is 
described in section 3.5. 
In addition to emulated environments for development and experimentation, we have 
also implemented the cross-layer substrate for actual field test and evaluation. Figure 2 
illustrates some of the computational platforms and tactical radios where we tested the 
XLayer substrate. 
Serial and tactical radios such as the Mircrohard Spectra, the PCS-5D, and the 
EPLRS/Microlights were supported through their serial or IP interfaces. For those 
radios, the XLayer substrate was running at the computer to which the radios where 
connected, and managed the radios through a virtual interface in the Network 
Management Service (see 3.3.2.7).  
For other devices with accessible computational platforms, such as the Lynksys base-
stations, the Soekris boards, iPhone and iPod Touch platforms, and others, the XLayer 
was ported to the native operating system to directly manage the communications 
interfaces. 
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Figure 2. Some of the Platforms and Tactical Radios Tested with the XLayer Substrate 

The operating systems supported for the Linksys radios were the OpenWRT (both the 
White Russian and Kamikaze versions). In those platforms, the XLayer managed all the 
wired and wireless interfaces, and also controlled the USB interfaces to enable GPS 
and external storage capabilities for logging. 
The Soekris boards (http://www.soekris.com/) supported multiple network interfaces 
through MinPCI cards using the Pyramid operating system. Both the OpenWRT and 
Pyramid OS implementations of the XLayer provided full monitoring of the 
communications interfaces, and computational resources such as memory and CPU 
utilization. Limited control of physical layer properties (such as transmission power) was 
also available on some of the platforms.  

http://www.soekris.com/
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3 THE XLAYER COMMUNICATIONS SUBSTRATE 

3.1 Introduction 
XLayer was designed to provide a modular communications infrastructure that allows 
applications and decision architecture systems to better adapt to and leverage the 
characteristics of the dynamic communications environment. It also enables the 
underlying communications infrastructure to better support application requirements and 
constraints. 
In support of the application and decision architecture systems, XLayer monitors, 
abstracts, and represents the characteristics and capabilities of the underlying 
communications infrastructure so applications can better adapt to changes in the 
underlying communications environment (e.g., by re-allocating resources). 
In support of the communications infrastructure, applications can provide information 
about resource requirements (both computational and communications) or utilization 
patterns. This information can then be used by the underlying communications 
infrastructure to better allocate resources and capabilities in response to changes that 
may occur either on demand or proactively, based on explicit application requirement 
patterns. 

3.2 Related Work 
Traditionally, cross-layer strategies for tactical and mobile ad hoc networks have 
primarily focused on short-term adaptation and state reporting between neighboring 
protocol layers, generally for the optimization of a single protocol such as Transmission 
Control Protocol (TCP) [12]. 
In general, most implementations are based on variations of QoS protocols inherited 
from the wired networks and still utilize some of the notions of signaling and 
coordination of neighboring protocol layers for resource reservation. The goal of most 
traditional cross-layer strategies is to monitor and detect short-term changes in channel 
conditions or competing traffic to notify upper layers about new QoS conditions. In most 
cases, applications are generally expected to adjust data rates accordingly when 
notified by a neighboring layer that current service expectations are no longer available. 
As illustrated by Goldsmith and Wicker [9], the actual adaptation and reporting between 
layers is generally done after local layer adaptations are no longer possible or cost 
effective. The different time-scales at each layer usually imply that local adaptation 
within each layer generally occurs first, and more frequently, than adaptation between 
layers. 
Protocols like dRSVP [16], for instance, provide per-flow end-to-end bandwidth 
guarantees for a range of requirements as opposed to a specific requirement like in 
RSVP. In this case, dRSVP "routers" exchange bandwidth reservation details through a 
signaling protocol and the flow is either denied access or dropped if channel availability 
becomes insufficient. 
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The SWAN Protocol [2] also uses signaling for short-term resource reservation. SWAN, 
like dRSVP, is fully decentralized, but it is best effort only and makes no assumptions 
about underlying QoS capabilities from the Medium Access Control (MAC) layer. The 
signaling in SWAN is intended for flow admission and the cross-layer nature of the 
protocol lies in the fact that MAC level packet delay information is shared and used for 
estimating medium access contention. After a flow is admitted in SWAN, the protocol 
uses the packet's explicit congestion notification flag (ECN) to notify that requested 
services are no longer supported for that flow. 
TIMELY [3] is another cross-layer architecture that provides link layer scheduling, 
resource reservation and adaptation, as well as priority-aware transport protocol that 
self-regulates flow based on feedback from the lower layers. TIMELY was initially 
proposed for cell-based wireless networks, and helped create the basis for subsequent 
ad hoc specific architectures and protocols with similar capabilities like Spine [18] and 
CEDAR [17]. 

3.3 The XLayer Architecture 
XLayer is specifically designed to provide and support a communication infrastructure 
that allows applications and decision architecture systems to better adapt and meet 
QoS requirements and constraints. A modular architecture makes XLayer flexible 
enough to support different scenarios that require of very specific capabilities. 
In the XLayer architecture (Figure 3), each service module provides a set of capabilities 
that can be directly utilized by other models, by loadable sub-controllers, or even by 
overlaying applications. Furthermore, state information created or maintained by 
different modules can be registered and made available to other components within the 
architecture. The goal is to facilitate the sharing of state information, avoiding the 
redundant rediscovery costs and overhead. For example, neighborhood and link 
detection are critical tasks for several types of applications and services (e.g. routing, 
discovery, data dissemination, etc.). XLayer enables neighborhood and link information 
to be easily shared to avoid the existence of redundant detection mechanisms on each 
of these services. 
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Figure 3. The XLayer Architecture 

 

XLayer supports two types of modules: services and controllers. XLayer services 
provide essential capabilities to other XLayer components and are typically started upon 
instantiation of the XLayer. XLayer controllers allow developers to extend the 
functionality of the XLayer and can be enabled or disabled depending on the 
requirements of client applications. 
In general, client applications communicate with the XLayer service using TCP sockets 
and a proprietary binary protocol. In order to simplify the development of these client 
applications, a proxy library, which is available in C++ and Java, enables remote 
procedure calls by handling the marshaling and unmarshaling of function parameters 
and results.  
The proxy handles the registration of several callback mechanisms. These callbacks 
inform client applications of the state of the channel between the application and the 
XLayer service (connected, disconnected), reception of messages, and monitoring 
events from metric and property updates. Additionally, the proxy provides a mechanism 
to create datagram and stream-oriented sockets that may be used transparently by 
applications to take advantage of the XLayer transport capabilities such as dual-path 
flows, multi-path routing, adaptive transport, and reliable UDP-based transport [4]. 
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3.3.1 The XLayer Proxy API 
The XLayer Proxy API is implemented in C++, but a Java Native Interface (JNI) wrapper 
allows Java applications to interact with the XLayer as well. The XLayer Proxy enables 
applications to transparently take advantage of the capabilities of XLayer based on a 
rich set of APIs that core services and controllers implement and expose through well-
defined mechanisms. Existing native and Java applications may, for example, use 
datagram and stream-oriented sockets that transparently interface with the XLayer 
transport service to offer capabilities such as adaptive and dual-path transport and 
multi-path routing. 
The C++ and Java XLayer proxy implementations provide the necessary APIs to 
connect and communicate with an XLayer service running locally or in a remote host. 
The following code fragment in C++ shows how to create an instance of the proxy to 
connect to an XLayer service running locally: 
 

#include “XLayerProxy.h” 

... 

XLayerProxy *pProxy = new XLayerProxy(); 

pProxy->connect(); 

... 

 
In the previous C++ example, the XLayerProxy will attempt to connect to the XLayer 
service running on the same host. That is, the XLayerProxy will try to open a connection 
to localhost on port 2000. The invocation of the connect method will not return until the 
XLayerProxy manages to establish a connection with XLayer. For this reason, in case 
the XLayerProxy needs to be connected to a XLayer service running on a remote host 
or in a port different (other than the default one), a connection can be made as follows: 
 

#include “XLayerProxy.h” 

... 

XLayerProxy *pProxy =  new XLayerProxy(); 

pProxy->connect("192.168.1.1", 2000); 

... 
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Note that the call to the connect () method may block if not XLayer is running on the 
given address and port number. In this case, a timeout value in milliseconds (2000 
milliseconds, for example) can be specified as follows: 
 

#include “XLayerProxy.h” 

 

... 

XLayerProxy *pProxy = new XLayerProxy(); 

pProxy->connect(“192.168.1.1”, 2000, false, 3000); 

... 

 

 
The proxy can also connect to XLayer asynchronously. In this case, the proxy notifies 
the client application through the XLayerProxyListener interface when the connection to 
the XLayer service is established. In the same manner, the proxy notifies the client 
application when it is disconnected from XLayer. 
 

#ifndef XLAYERPROXYLISTENER_H_ 

#define XLAYERPROXYLISTENER_H_ 

 

class XLayerProxyListener 

{ 

 public: 

  virtual ~XLayerProxyListener(); 

  virtual void connected() = 0; 

  virtual void disconnected() = 0; 

}; 

 

#endif /* XLAYERPROXYLISTENER_H_ */ 

 
Once connected, the application can use the capabilities of XLayer through the XLayer 
Proxy API. 
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3.3.2 XLayer Services 
XLayer services are modules that provide the essential capabilities required by other 
components to perform more complex tasks (See Table 1). In the XLayer, a set of core 
services provide support for network interface detection and configuration, transport of 
messages, flooding, neighbor discovery, and monitoring of the different node and 
network properties, such as resource utilization, link quality, topology, and route 
information. 
 

Table 1. XLayer Services 

Service Name Main Capabilities 
Basic Service  Provides bootstrap APIs for XLayer’s controllers and 

services.  

Logging Service Provides a mechanism for remote logging of the 
XLayer service. 

Information Service  Constitutes the central repository of shared information 
in XLayer. 

Dissemination Service Provides a common API for a configurable set of 
message flooding mechanisms for MANETs. 

Transport Service  Provides end-to-end communication for XLayer-
enabled nodes. 

Message Propagation Service  Provides 1-hop communication with other XLayer-
enabled nodes. 

Network Management Service  Detects and manages all physical (wired and wireless) 
network interfaces that are available to XLayer. 

 

3.3.2.1 Basic Service 
The Basic Service makes available two key functionalities to other XLayer modules: 1) a 
mechanism to load/start and unload/stop XLayer controllers, and 2) a mechanism to 
add or remove bridge connections. A bridge connection is a permanent TCP connection 
that is established with another XLayer service to interconnect two or more XLayer-
aware networks with different address spaces, transport protocols, or routing 
algorithms. 
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3.3.2.2 Logging Service 
The Logging Service provides a mechanism for remote logging of the XLayer service. 
Log messages are intercepted and sent over a UDP socket to facilitate monitoring and 
debugging of XLayer modules executed on platforms which can only be accessed 
remotely or have very limited storage space. 

3.3.2.3 Information Service 
The Information Service constitutes the central repository of shared information in 
XLayer. It holds and provides access to information about the local and remote nodes, 
as well as the existing links between them. The Information Service uses the available 
information to compute routes and link quality metrics such as packet drop rates and 
delays, and advertises the properties of the local node such as number of interfaces, 
CPU usage, memory, disk and network utilization. Additionally, it provides synchronous 
and asynchronous notification mechanisms for node discovery and status and topology 
changes. 

3.3.2.4 Dissemination Service 
The Dissemination Service provides a common API for a configurable set of message 
flooding mechanisms for MANETs. Flooding is often used by numerous routing and 
distributed coordination algorithms in MANETs, but it generally constitutes a very 
expensive operation in mobile ad hoc networks [20]. The Dissemination Service enables 
applications to use the most suitable flooding algorithm given the current network 
conditions. Additionally, it provides a mechanism for registering messages that need to 
be repeatedly and periodically disseminated at specific time intervals, effectively 
enabling a powerful API for proactive message propagation in the network. 

3.3.2.5 Transport Service 
The Transport Service provides end-to-end communication for XLayer-enabled nodes 
and the ability to track and split flows in order to support dual-path algorithms. The 
reception and forwarding of messages is done through the Message Propagation 
Service, however, the Transport Service is responsible for determining which 
interface(s) will be used to forward the message. This makes possible for the Transport 
Service to provide optimized, reliable and adaptive transport capabilities to 
accommodate the QoS requirements of other components and applications. 

3.3.2.6 Message Propagation Service 
The Message Propagation Service provides 1-hop communication with other XLayer-
enabled nodes through unicast, broadcast or multicast UDP packets that encapsulate 
one or more XLayer messages. XLayer controllers, services and applications can 
register message handlers for specific or new message types. In addition, the Message 
Propagation Service provides basic neighbor discovery and link sensing, consolidated 
transmission of multiple messages to reduce bandwidth utilization, and extensible 
packet headers and packet filters that can be used to enable topology emulation 
capabilities, instrumentation, monitoring and other important features required by 
controllers and middleware applications. 
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3.3.2.7 Network Management Service 
The Network Management Service detects and manages all physical (wired and 
wireless) network interfaces that are available to XLayer.  Additionally, it gathers 
statistics on the number of packets (and bytes) transmitted and received on each of the 
network interfaces. It also makes available an API to activate and deactivate interfaces, 
and to notify other modules about their status (up, down). 

3.3.3 XLayer Controllers 
The functionality of the XLayer can be extended through XLayer controllers. An XLayer 
controller is a module that implements one or more algorithms to perform specific tasks 
(See Table 2). In many cases, these algorithms can be made available to other XLayer 
modules and composed to further extend the XLayer functionality. 



17 
 

Table 2. XLayer Controllers 

Task Description 
Group Management 
and Discovery  

A set of controllers provides basic group management and 
discovery. These controllers use the Dissemination Service to 
permanently advertise group membership and perform peer 
searches within a certain scope (i.e., hop-distance). 

Adaptive and Predictive 
Routing 

A predictive routing controller is responsible for correcting the 
offset of hello messages of a link-state routing protocol to 
construct a projection of the topology for next hop selection. 
In our previous research [8], we have shown significant 
improvements in both packet loss and average delay for 
predictive routing by simply adjusting the local topology 
based on short-term mobility and link quality trends for 
neighbor nodes. 

Dynamic Gateway 
Selection 

A controller allows XLayer to use different routing strategies 
that can help to reduce routing related traffic on ultra dense 
networks. 

Multicast Forwarding A controller provides efficient multicast packet forwarding in 
MANETs based on the approach followed by the OLSR Basic 
Multicast Forwarding (BMF) plug-in [19] and the capabilities 
of the Dissemination Service. 

Topology Adaptation 
and Control 

A set of controllers makes use of information about the flows 
of data going through the neighbors of the local node to 
change its position based on the application's transport 
requirements. 

Virtual Topology Control A controller registers an extended header and filter to inspect 
all packets received by the Message Propagation Service in 
order to accept or reject packets based on the sender and 
receiver node's virtual position and their transmission power, 
constructing a virtual topology that can be used to setup 
simulations and experiments. 

Platform Emulation A set of controllers enables applications to transparently 
access node's properties such as position, direction, and 
speed, without making any assumptions about the 
environment where XLayer is running. 

 
XLayer can dynamically load XLayer controllers. The dynamic loading of XLayer 
controllers has three main advantages: 1) it makes possible to extend the functionality 
of the XLayer without changing the XLayer executable, 2) it encourages the reutilization 
of code by sharing common functionality among controllers, and 3) it facilitates the 
integration XLayer controllers by third-parties. 
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3.4 Supported Platforms and Proof-of-Concept Implementation 
As described in the previous section, a proof-of-concept implementation of the XLayer 
architecture was developed in C++, with proxy APIs for C++ and Java. This 
implementation was extensively tested and demonstrated in different environments, and 
has been used to evaluate some of the controllers described in Section 3.3.3. 

3.5 Emulation Environment based on XLayer 
Test and validation of MANET technologies and applications have always been a 
complex and challenging problem. Theoretical models of such networks have 
traditionally been used as the basis for simulation and emulation frameworks. However, 
in most cases, such models are generally too complex to be practical or too simplistic to 
be representative.  
Not surprisingly, the alternative approach for validation and development is to rely on 
field experiments which are usually costly, time consuming and very difficult to replicate. 
In the case of airborne networks, the issue is even more complicate, as it involves more 
degrees of freedom for the participating nodes and multiple external effects such as 
shadowing caused by the airframe, engine interference and others. All these factors are 
very difficult to model and represent in a simulated or emulated environment accurately. 
As an extension to this project, we executed a task to design and develop a hybrid 
emulation testbed for mobile ad hoc networks called MLAB. MLAB enables both the use 
of theoretical propagation models and experimental data to emulate link characteristics 
between nodes. Furthermore, it allows for a mixed modeling strategy that includes both 
the theoretical models and experimental field data.  
These characteristics make it a well-fit emulation environment for airborne networks, 
where the multiple degrees of freedom and complexity of the nodes make it very difficult 
to create reliable theoretical models that would suffice for the emulation. 

3.5.1 The MLAB Testbed 
Figure 4 illustrates the basic architecture and the physical layout of the MLAB testbed. 
Note that each testbed node has two interfaces, one connected to the control network, 
and the other connected to the data network. The only exception is the controller 
machine, which is only connected to the control network because it plays no role on 
data exchange. The design physically separates control from data traffic, minimizing the 
effects of monitoring and control in the actual experiment. 
The first version of the emulation environment made use of a Linux service for tagging 
all IP packets transmitted through the data interface and a kernel library for capturing 
and filtering those packets in order to emulate the required link conditions. The second 
implementation of the MLAB testbed used a virtual network interface for link 
enforcement based on the TUN/TAP virtual network kernel driver, providing a much 
more flexible and faster mechanism for link parameterization. 
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Figure 4. The MLAB testbed: the control (gray) and data (blue) networks 

Parameters for the TUN/TAP virtual interface are provided at run-time by a link 
modeling application running at the controller node (see Figure 5), for a given network 
topology and mobility scenario. All data coordination messages between the controller 
and enforcement drivers are done through an isolated network known as the Control 
Bus. On the other hand, all data messages between applications running on the 
emulation network are exchange through the Data Bus, which is separated from the 
Control Bus to minimize any coordination overhead that may affect the actual emulation. 
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Figure 5. Main Coordination and Enforcement Components of the MLAB testbed 

 

3.5.2 XLayer and MLAB Integration 
XLayer enhances the usability of MLAB by providing a two-way interface between 
higher-level applications and the emulation components (Table 3). At each node, 
XLayer provides monitoring and control capabilities that enable users to transparently 
interface their applications with the underlying emulation and communications 
infrastructure. Applications use a proxy to communicate with the XLayer service to 
gather environmental information and to control transmission power and node mobility. 
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Table 3. MLAB Software Components 

Name Description 
Controller Daemon Manages and controls the emulation environment. This 

daemon maintains a global view of the network topology for 
each active experiment and monitors the attributes of each 
node (position, speed, and transmission power) to 
continuously adjust the link characteristics based on the 
packet drop and delay probability values indicated by the 
theoretical and data-driven models. 
 

Node Daemon Creates and manages the node's virtual emulation network 
interface. It continuously reconfigures the interface to filter 
incoming and outgoing packets according to the packet drop 
and delay probability values as indicated by the controller. 
This daemon also collects traffic statistics and periodically 
sends feedback messages to the controller to be used for 
calibration of the interference model. 
 

XLayer Provides monitoring and control capabilities that enable users 
to transparently interface their applications with the 
underlying emulation and communications infrastructure. 
 

MView Acts as a visualization and management tool for experiments. 
It allows users to create, edit and remove experiments as well 
as to visualize the network topology in a 3-D world. It also 
provides a tool for setting the attributes of each node such as 
speed, transmission power, position, and others. 

 
When XLayer is used to interface applications with MLAB, the changes made at the 
cross-layer level are relayed to the controller and the link characteristics are adjusted to 
reflect the new conditions (Figure 6). Hence, the use of XLayer allows for easy testing of 
applications because no assumptions need to be made about the underlying platform, 
facilitating the deployment task outside the emulation environment. 
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Figure 6. Cross-Layer Services for the MLAB Emulation Environment 
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4 RESULTS AND DISCUSSION 
During the life of the project, the XLayer was deployed, tested and evaluated in different 
scenarios and demonstrations. In general each of the controller capabilities were tested 
independently, in simulation, emulation of field-test environments. In this section we 
provide a brief description of some of these studies, and refer the reader to additional 
publications for further reading.  
Each of the capabilities described in this section were development as XLayer 
controllers and tested in one or more of the test platforms described in Section 3.4. 
Collectively, they realize the requirements specified in Section 2.2, and constitute the 
results of the proposed research effort.  

4.1 Predictive Routing 
In collaboration with the Army Research Laboratory, we have levered the distributed 
monitoring capability (see 4.6) of the XLayer substrate to create POLSR, a predictive 
routing protocol based on OLSR.  
In most link state-based protocols like OLSR, changes in local topology are often 
detected through periodic beaconing. Because of the distributed nature of the protocol, 
each node is responsible for their own detection and reporting of unidirectional changes 
– which are then aggregated and shared by other nodes upon notification of change. 
While efficient, the approach leads to a slight inconsistency of state information that 
could become relevant for some scenarios. This effect is illustrated in Figure 7, where a 
snapshot is shown for a mobile network at four different times from left to right. In the 
figure, solid nodes have a correct representation of the correct routing table, while open 
nodes have inaccurate information induced by the changes in the network. As time 
progresses, the number of nodes with a misrepresented view of the global topology 
grows. 

 
Figure 7. Mobility-induced routing table deviations with time (from left to right) 

 
POLSR mitigates the inconsistency of state information by enabling each node to 
estimate, based on the mobility of its neighbors, the changes in the network to improve 
route calculation. The estimation of node mobility is indirect – either based on variations 
of signal strength capture from lower layers, or based on mobility vectors explicitly 
reported by nodes as part of their beaconing messages.  
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In this paper, we show that a local correction of topology based on simple mobility and 
propagation models. As shown in Figure 8, a distributed corrective model can be added 
to OLSR for route calculation. In Figure 8, Pt  is the transmit power, and Pr  the received 
power. Gt  and Gr  are the antenna gains for the transmitter and the receiver, L  is the 
system loss, and  λ  is the wavelength. Based on the parameterized distance (d) 
between transmitter and receiver the received power function ( Pr (d) ) can be used to 
estimate the average and standard deviation of the log of the power at the receiver 
node log(Pr (d)) . 

Each node still makes an independent estimation of network topology for calculating the 
routing table but it takes the beaconing delays, and the projected mobility patterns of its 
neighbors into account.  

( )

( ) ( )

( )

( ) ( ) ⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−+−

⎟
⎠
⎞

⎜
⎝
⎛ −⋅−

+
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−+−

⎟
⎠
⎞

⎜
⎝
⎛ −⋅−

=
2222 ''

''

''

''

yyxx
dt
dy

dt
dyyy

yyxx
dt
dx

dt
dxxx

dt
dr

Pr (d) =
PtGtGrλ

2

(4π )2 d0
2L

·( d
d0

)−β ·10XdB /10  

 

 

 

Figure 8. Mobility and Propagation Models for POLSR 

 
As described in [7], the POLSR enabled significant gains in reduced packed loss 
(Figure 9) and jitter for random walk scenarios over uniformly distributed network 
topologies.  

  
Figure 9. POLSR Experimental Results 
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4.2  Adaptive Dual-Link Allocation for Transport Support 
One of the capabilities provided by the XLayer substrate was the abstraction and 
transparent utilization of multiple links (or overlapping networks) on each node. Data 
links with different characteristics and capabilities could be used, in different contexts, to 
support information management system or application level requirements.  
On the example scenario illustrate in Figure 10, a pub-sub configuration was created 
using the AFRL’s reference implementation of the Apollo Information Management 
System (later replaced by the AFRL’s tactical IMS implementation called Phoenix). 

 
Figure 10. Experimental Setup for Dual-Link Management Controller 

In this scenario, a publisher sends information objects to the Apollo Server, which is 
connected to an edge node through two redundant links (900 MHz and 3.4GHz). The 
multiple links are supported by different interfaces connected to distinct radios for each 
link. While the publisher application and Apollo server can choose to bind to any one of 
the interfaces, the XLayer substrate abstracts both links into a single connection 
between the two platforms.  
The management of both data links is handled by the XLayer to support the application 
requirements defined by the applications (or by related policies). In this example, the 
application (represented by the IMS), may define a self-balancing policy for the links 
(i.e. an adaptive strategy), or strategies that favor robustness or throughput.  
In each case, the XLayer will balance the flow across the links provided to satisfy 
application requirements. Also as part of this demonstration, an RF-flooded was used to 
compromise one of the links (the 2.4 GHz) and simulated an external attack. The goal 
was to ensure that, despite of any specific interfaces to which the applications may be 
bound, the XLayer would transparently balance the flow across the different links to 
maintain the requirements.   
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In Figure 11, the demonstration scenario shows the output for each of the three 
requirement conditions specified by the applications, namely the favoring of capacity, 
reliability or and adaptive behavior.  

 
Figure 11. Online Strategies for Dual-Link Management, in Support to Application 

Requirements 

For capacity maximization, the XLayer uses both links as an aggregate pipe, alternating 
information object transmissions for each of the links, based on their throughput 
capacity and queue conditions. If favoring reliability (second case), the XLayer would 
duplicate information management objects on both links, again in accordance with their 
throughput limits and queue sizes. Information objects sent on both links were matched 
on at the receiver side and dropped in the case of duplicates. The goal with the 
duplication of objects was to minimize the loss of objects that could occur due to link 
failures or external interferences.  
In the adaptive scenario, there were no a-priori preferences chosen by the application. 
The best link from a minimal error rate and maximum throughput perspective, in this 
case, was chosen for transmission. External effects to the link, such as interference 
created by the RF-flooder would results in re-allocation of resources to maintain 
application requirements. Each of the cases illustrated in Figure 11, were demonstrated 
at the AFRL PI meeting in 2008.  
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4.3 Dual-Path Algorithms for Tactical Environments 
Another capability developed as a controller for the XLayer communications substrate 
was the dual-path topology control algorithm. This effort was developed in collaboration 
with Rockwell Collins and evaluated in a simulated environment, and it was published in 
[1].  
The dual-path algorithm bridged information from the transport and physical layers to 
autonomously create two disjoint communication paths for an end-to-end data stream. 
The resulting path was dynamically created as a reaction to the data flow and, 
conditioned to resource availability, ensured that both data paths were node, and link 
disjoint, eliminating cross-interference. 
The goal of the protocol was to enable robust end-to-end data paths, with support from 
topology control algorithms. While topology control could be obtained through power, 
frequency or mobility management, our proof of concept implementation [1], focused on 
mobility management.  
The mobility was based on heuristics implemented at each node that would trigger 
when interfering traffic from the same data flow was detected. Some of the heuristics for 
the algorithm are illustrated in Figure 12.  
Our initial publications of the dual-path algorithm were primarily focused on the 
description of the algorithm and qualitative analysis of benefits. We refer the reader to 
[1] for further details and for a description of the pseudo-code used for this controller.  
 

  
Figure 12. Example heuristics for the dual-path algorithm 

 



28 
 

4.4 Adaptive Discovery and Information Dissemination 
One of the core services of XLayer that we developed consisted of a discovery and 
information dissemination mechanism capable of self-adapting to different network 
topologies and traffic conditions. The main goal of this mechanism was to reduce the 
number of retransmissions for broadcast packets while attempting to maintain the same 
delivery rate of more simplistic broadcast techniques that are known to cause undesired 
bandwidth congestion. 
This adaptive mechanism made use of different broadcasting algorithms that are known 
to perform better under certain network conditions [20]. Based on the characteristics of 
the current network topology (i.e. sparse versus dense), the dissemination service 
would activate a broadcast algorithm that was more suitable for the given network 
topology and traffic conditions, reducing the number of retransmissions, and improving 
the effectiveness of the broadcasting algorithm and the overall performance of the 
dissemination mechanism.  
In Figure 13 we show a comparison of a reliable flood mechanism for service discovery 
based on simple flooding with our self-adaptive approach. The results demonstrate that 
the delay and coverage (i.e. number of records found) are statistically the same in both 
cases, but the number of retransmissions is significantly less for the adaptive case. 
 

 
Figure 13. Adaptive Discovery/Dissemination based on Local Network Density 

 
Another approach we explored was the use of dynamic backbones for dissemination of 
service registrations based on an adaptive CDS-discovery mechanism (Figure 14), 
providing a mechanism for balancing the trade-off between a higher number of 
registrations versus higher lookup costs, which could be chosen by the framework on 
demand. 
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Figure 14. Adaptive CDS-based Discovery 

 
Collectively, these capabilities enabled enhanced discovery and also information 
dissemination in general. For example, services such as monitoring and link-state 
routing, which strongly rely on the dissemination of messages across the network, 
leveraged the capabilities of this self-adaptive dissemination mechanism to efficiently 
share network and node state information, while reducing the overhead caused by 
unnecessary retransmissions of messages between nodes. 

4.5 Dynamic Gateway Selection 
Another capability developed and demonstrated as part of the XLayer communications 
substrate was the dynamic selection of gateways for cross-domain routing. Cross-
domain routing is an important capability in tactical environments. In [8], we have 
implemented a distributed algorithm for dynamic gateway selection that enables cross-
domain routing between different networks running different routing algorithms. 
The purpose of this controller is to enable interaction between different networks 
running different routing algorithms or routing policies coming within contact to one 
another. The XLayer substrate must be able to detect and recognize both routing 
algorithms and will determine how to identify and configure gateway nodes to bridge 
across the networks.  
Different routing protocols exist at each node, registered with the XLayer. Only one 
protocol is active at each network until contact is established. As illustrated in Figure 15, 
an unknown routing message is checked against all registered protocols and if a match 
is found a gateway election algorithm is triggered.  
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Figure 15. Parsing unknown routing messages 

 
Once elected to become a gateway, a node is responsible for sharing routes across 
both networks, enabling the seamless routing across both networks. Only gateway 
nodes execute more than one routing protocol, all other nodes remain on their original 
protocols, learning new routes to the remote network through the gateway node. 
The experimental evaluation of this work was done through simulated scenarios where 
two networks running the HSLS and OLSR protocols are temporarily within range of one 
another. A randomly chosen node in one of the networks is continuously trying to send 
messages to randomly selected receiver on the remote network. Upon connection at the 
boarder nodes, and gateway election, the sender node finds a route to the receiver and 
starts sending data. To illustrate the capability, the performance was measured in terms 
of packet drops and delay in route establishment.  
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Figure 16. Simulation results for the dynamic gateway controller 

 
The mixed OLSR/HSLS scenario, called hybrid, was compared with a pure OLSR 
environment where both networks were a-priori running OLSR, and a pure HSLS 

environment where both networks were a-priori running HSLS ( 

Figure 16). 

4.6 Distributed Monitoring Service  
Distributed monitoring was another capability of the XLayer that we developed as one of 
its core services. XLayer was designed to collect, aggregate, and share a distinctive 
number of metrics using information available to the node, such as routes, packet drop 
rates and delay estimations, number of interfaces, CPU usage, memory, disk, network 
utilization, other predefined metrics, and service or application defined metrics. 
Internally, XLayer maintained a table of metrics, each of those identified by a name and 
a time-series data structure. Every time a new value was provided for a particular 
metric, the time-series data structure was updated. When the statistics for a metric were 
requested through the XLayer monitoring API, the time-series was used to compute the 
average, variance, and trend of all the collected values in the time-series window. 
XLayer-aware nodes leveraged on enhanced dissemination mechanisms (see 2.2.2) to 
share and distribute the information across the network, so that nodes could build a 
global state of the network that could allow other applications and XLayer services to 
make informed decisions in order to satisfy particular QoS requirements. 
Additionally, we developed a powerful notification mechanism based on simple 
subscription rules that allowed applications to be notified about metric changes, trends 
and range violations based on previously specified minimum and maximum thresholds. 

4.7 Dynamic Integration of Heterogeneous Networks 
The use of controllers to interface with service management systems allows the XLayer 
substrate to seamlessly monitor and coordinate multiple heterogeneous networks for a 
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common mission. This capability was demonstrated in January 2009 as part of a 
demonstration scenario at the AFRL.  
The test scenario for the proposed demonstration is illustrated in Figure 17 and includes 
multiple overlapping networks combined through nodes with multiple interfaces. Each 
network is configured independently at the beginning at the test and the XLayer 
substrate identifies the configuration and shares state information with other nodes to 
allow for dynamic resource allocation and reconfiguration as necessary.  

 
Figure 17. Seamless integration of heterogeneous networks 

 
This part of the work has not been published but it may later be included as part of a 
joint publication with the AFRL and Raytheon, both collaborators in this demonstration 
effort.  
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Figure 18. Demonstration Phase A – Launching UAV 

During the first phase (Phase A) of the demonstration (Figure 18) a Recon ground 
soldiers launches a small UAV to locate potential threats in the area. The data link 
maintained between the ground soldier and the UAV is a 900 MHz channel provided by 
a serial Microhard Radio.  
Upon detection of a potential target, the UAV starts publishing images to the IMS. As a 
subscriber to the images, the TOC starts to receive MIOs from the IMS through the dual 
link illustrated in Figure 19. For demonstration purposes, the two links between the IMS 
and the TOC were set with Microlight EPLRS radios, and with an Ethernet connection, 
representing a high-capacity direct link between the nodes. 
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Figure 19. A potential target is located in Phase B, triggering the publications of images 

from the UAV 

 
The scenario evolves with the TOC tasking the F16 fighter to locate the target (Figure 
20). The F16 subscribes to the UAV images and starts receiving the data published by 
the UAV. During this process, the XLayer is managing the node (and service) discovery, 
and the resource allocation amongst the different links.  
During the subsequent phases of the demonstration, the F16 moves to the location of 
the target opportunistically managing different data links through its path and 
seamlessly receiving image updates from the UAV. At all times, the XLayer manages 
the allocation of the appropriate data-links for message passing, providing seamless 
discovery and message dissemination across the heterogeneous data links. 
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Figure 20. Subsequent Phases of the Demonstration Scenario 
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5 CONCLUSIONS 
The modular architecture of XLayer provides the necessary mechanisms to enable the 
interaction between applications or middleware and the different levels of the 
communications substrate, which makes the design of XLayer flexible enough to 
support a large range of different scenarios and capabilities. This design also facilitates 
the development of more complex functionality by leveraging on the information and 
functionality provided by core services that abstract essential capabilities realized 
across the various layers of the communications stack. 
A rich set of APIs allow applications to better adapt and allocate resources for a given 
task, while at the same time contributing to better define the information and resource 
needs that can be used by XLayer to allocate the necessary capabilities so as to meet 
the QoS requirements of applications. Thus, XLayer provides an extensible platform 
suitable for research and experimentation of new protocols and algorithms for tactical 
and mobile ad hoc networks for the battlefield. 
XLayer was implemented, tested and demonstrated in multiple exercises and 
experiments carried in collaboration with the Army Research Laboratory, the Air Force 
Research Laboratory, and commercial companies like Raytheon Co. and Rockwell 
Collins. During the life of the project, XLayer has been ported to several operating 
systems such as Linux, OpenWRT, Pyramid, Windows, MacOS X, multiple computing 
platforms, and tactical radios. Different configurations have been utilized to demonstrate 
and highlight specific capabilities of XLayer, such as discovery, link sensing, adaptive 
and predictive routing, topology control and adaptation, enhanced forwarding of 
broadcast and multicast traffic, and others. When possible, XLayer was executed as 
part of the communications device (e.g. Linksys-based 803.11 radios, the iPod Touch 
platforms, and the Soekris-based radios). In other situations, such as the case where 
XLayer needed to support tactical radios, the communication between the radios and 
XLayer was realized through the implementation of customized interface adaptors or 
pseudo-interfaces. 
A multi-system demonstration including a tactical Information Management System for 
an airborne ground-support operation scenario was executed at the Air Force Research 
Laboratory in early 2009. During such demonstration, XLayer enabled seamless 
operation across the multiple network and communications environments. The key 
features of XLayer that made possible such integration include the utilization of multiple 
redundant links to provide enhanced discovery, node and network resource monitoring, 
seamless cross-domain routing and on-demand multi-path transport. 
XLayer has also been applied in support of key capabilities for tactical Information 
Management Systems for Airborne Network environments [5][6], quality-of-service 
enabled data dissemination [13][14][15], emulation environments for airborne networks, 
and several other applications in security and network management. 
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6 RECOMMENDATIONS 
During the course of this research we have demonstrated several cross-layer algorithms 
and controllers that can provide a direct improvement on the performance and 
functionality of tactical information management systems. Furthermore, we have also 
introduced and demonstrated a modular architecture to support the integration and 
coordination of multiple controllers. Following our results and conclusions, we 
recommend the following points for applying or continuing this research effort. 

• Additional controllers and cross-layer algorithms: Different applications and 
operational environments may benefit from different sets of capabilities and 
possibly additional controllers. During our research, we have identified four topics 
to illustrate the concept and have developed a few controllers for each topic. New 
scenarios and applications may require additional controllers for the 
communications substrate. 

• Management Algorithms for the instantiation and orchestration of cross-layer 
controllers. While we have applied different controllers to different scenarios, a 
more comprehensive approach capable to opportunistically select, combine and 
leverage the different is still needed for general applications. Policy-based 
management infrastructures for QoS support could provide this capability.  

• The design of self-organizing coordination controllers is necessary to enable the 
combination of different capabilities for specific scenarios and applications. There 
is a need for further research on self-organizing coordination approaches that 
could benefit from the XLayer framework and the controllers for the different 
layers.  
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SYMBOLS, ABBREVIATIONS, AND ACRONYMS 
  
API application programming interface 
BMF basic multicast forwarding 
CEDAR core-extraction distributed ad-hoc routing 
CDS connected dominating set 
CPU central processing unit 
dRSVP dynamic resource reservation protocol 
ECN explicit congestion notification 
EPLRS enhanced position location reporting system 
HSLS hazy-sighted link state routing 

IMS information management system 
JNI Java native interface 
MAC medium access control 
MANET mobile ad-hoc network 
MIO management information object 
MLAB an emulation testbed for mobile ad-hoc networks 
OLSR optimized link state routing 
POLSR predictive optimized link state routing 
QoS quality of service 
RSVP resource reservation protocol 
SWAN self-organizing wireless adaptive network 
TCP transmission control protocol 
TIMELY adaptive resource management architecture for resource reservation 
TOC tactical operations command 
TUN/TAP virtual network kernel driver for software network interfaces 
UAV unmanned aerial vehicle 

UDP user datagram protocol 
 
 




